/* * MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT. * NOTE: Please also check the comments in MFRC522.h - they provide useful hints and background information. * Released into the public domain. */ #include "mfrc522.hpp" #include #include const byte mfrc522::mfrc522_firmware_reference_v0_0[] = { 0x00, 0x87, 0x98, 0x0f, 0x49, 0xFF, 0x07, 0x19, 0xBF, 0x22, 0x30, 0x49, 0x59, 0x63, 0xAD, 0xCA, 0x7F, 0xE3, 0x4E, 0x03, 0x5C, 0x4E, 0x49, 0x50, 0x47, 0x9A, 0x37, 0x61, 0xE7, 0xE2, 0xC6, 0x2E, 0x75, 0x5A, 0xED, 0x04, 0x3D, 0x02, 0x4B, 0x78, 0x32, 0xFF, 0x58, 0x3B, 0x7C, 0xE9, 0x00, 0x94, 0xB4, 0x4A, 0x59, 0x5B, 0xFD, 0xC9, 0x29, 0xDF, 0x35, 0x96, 0x98, 0x9E, 0x4F, 0x30, 0x32, 0x8D }; const byte mfrc522::mfrc522_firmware_reference_v1_0[] = { 0x00, 0xC6, 0x37, 0xD5, 0x32, 0xB7, 0x57, 0x5C, 0xC2, 0xD8, 0x7C, 0x4D, 0xD9, 0x70, 0xC7, 0x73, 0x10, 0xE6, 0xD2, 0xAA, 0x5E, 0xA1, 0x3E, 0x5A, 0x14, 0xAF, 0x30, 0x61, 0xC9, 0x70, 0xDB, 0x2E, 0x64, 0x22, 0x72, 0xB5, 0xBD, 0x65, 0xF4, 0xEC, 0x22, 0xBC, 0xD3, 0x72, 0x35, 0xCD, 0xAA, 0x41, 0x1F, 0xA7, 0xF3, 0x53, 0x14, 0xDE, 0x7E, 0x02, 0xD9, 0x0F, 0xB5, 0x5E, 0x25, 0x1D, 0x29, 0x79 }; const byte mfrc522::mfrc522_firmware_reference_v2_0[] = { 0x00, 0xEB, 0x66, 0xBA, 0x57, 0xBF, 0x23, 0x95, 0xD0, 0xE3, 0x0D, 0x3D, 0x27, 0x89, 0x5C, 0xDE, 0x9D, 0x3B, 0xA7, 0x00, 0x21, 0x5B, 0x89, 0x82, 0x51, 0x3A, 0xEB, 0x02, 0x0C, 0xA5, 0x00, 0x49, 0x7C, 0x84, 0x4D, 0xB3, 0xCC, 0xD2, 0x1B, 0x81, 0x5D, 0x48, 0x76, 0xD5, 0x71, 0x61, 0x21, 0xA9, 0x86, 0x96, 0x83, 0x38, 0xCF, 0x9D, 0x5B, 0x6D, 0xDC, 0x15, 0xBA, 0x3E, 0x7D, 0x95, 0x3B, 0x2F }; const byte mfrc522::fm17522_firmware_reference[] = { 0x00, 0xD6, 0x78, 0x8C, 0xE2, 0xAA, 0x0C, 0x18, 0x2A, 0xB8, 0x7A, 0x7F, 0xD3, 0x6A, 0xCF, 0x0B, 0xB1, 0x37, 0x63, 0x4B, 0x69, 0xAE, 0x91, 0xC7, 0xC3, 0x97, 0xAE, 0x77, 0xF4, 0x37, 0xD7, 0x9B, 0x7C, 0xF5, 0x3C, 0x11, 0x8F, 0x15, 0xC3, 0xD7, 0xC1, 0x5B, 0x00, 0x2A, 0xD0, 0x75, 0xDE, 0x9E, 0x51, 0x64, 0xAB, 0x3E, 0xE9, 0x15, 0xB5, 0xAB, 0x56, 0x9A, 0x98, 0x82, 0x26, 0xEA, 0x2A, 0x62 }; ///////////////////////////////////////////////////////////////////////////////////// // Basic interface functions for communicating with the MFRC522 ///////////////////////////////////////////////////////////////////////////////////// mfrc522::mfrc522( unsigned bus, unsigned device, unsigned reset ) : spi_(bus, device), reset_(reset) {} /** * Writes a byte to the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ void mfrc522::pcd_write_register( pcd_register reg, ///< The register to write to. One of the PCD_Register enums. byte value ///< The value to write. ) { byte buf[2] = { reg, value }; spi_.write(buf, 2); } // End PCD_WriteRegister() /** * Writes a number of bytes to the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ void mfrc522::pcd_write_register( pcd_register reg, ///< The register to write to. One of the PCD_Register enums. byte count, ///< The number of bytes to write to the register byte *values ///< The values to write. Byte array. ) { byte buf[count + 1] = { reg }; memcpy(&buf[1], values, count); spi_.write(buf, count + 1); } // End PCD_WriteRegister() /** * Reads a byte from the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ byte mfrc522::pcd_read_register( pcd_register reg ///< The register to read from. One of the PCD_Register enums. ) { auto value = spi_.read_register(reg); // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. spi_.write(0); // TODO: is this correct? return value; } // End PCD_ReadRegister() /** * Reads a number of bytes from the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ void mfrc522::pcd_read_register( pcd_register reg, ///< The register to read from. One of the PCD_Register enums. byte count, ///< The number of bytes to read byte *values, ///< Byte array to store the values in. byte rx_align ///< Only bit positions rxAlign..7 in values[0] are updated. ) { if (count == 0) { return; } //Serial.print(F("Reading ")); Serial.print(count); printf(" bytes from register.")); //byte address = reg; // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. byte index = 1; // Index in values array. //count--; // One read is performed outside of the loop byte value = spi_.read_register(reg); // Tell MFRC522 which address we want to read if (rx_align) { // Only update bit positions rxAlign..7 in values[0] // Create bit mask for bit positions rxAlign..7 byte mask = (0xFF << rx_align) & 0xFF; // Apply mask to both current value of values[0] and the new data in value. values[0] = (values[0] & ~mask) | (value & mask); } else { values[0] = value; } while (index < count) { values[index] = spi_.read_register(reg); // Read value and tell that we want to read the same address again. index++; } spi_.write(0); // Read the final byte. Send 0 to stop reading. } // End PCD_ReadRegister() /** * Sets the bits given in mask in register reg. */ void mfrc522::pcd_set_register_bit_mask( pcd_register reg, ///< The register to update. One of the PCD_Register enums. byte mask ///< The bits to set. ) { byte tmp; tmp = pcd_read_register(reg); pcd_write_register(reg, tmp | mask); // set bit mask } // End PCD_SetRegisterBitMask() /** * Clears the bits given in mask from register reg. */ void mfrc522::pcd_clear_register_bit_mask( pcd_register reg, ///< The register to update. One of the PCD_Register enums. byte mask ///< The bits to clear. ) { byte tmp; tmp = pcd_read_register(reg); pcd_write_register(reg, tmp & (~mask)); // clear bit mask } // End PCD_ClearRegisterBitMask() /** * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::pcd_calculate_crc( byte *data, ///< In: Pointer to the data to transfer to the FIFO for CRC calculation. byte length, ///< In: The number of bytes to transfer. byte *result ///< Out: Pointer to result buffer. Result is written to result[0..1], low byte first. ) { pcd_write_register(CommandReg, PCD_Idle); // Stop any active command. pcd_write_register(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit pcd_write_register(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization pcd_write_register(FIFODataReg, length, data); // Write data to the FIFO pcd_write_register(CommandReg, PCD_CalcCRC); // Start the calculation // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73μs. // TODO check/modify for other architectures than Arduino Uno 16bit // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73us. for (uint16_t i = 5000; i > 0; i--) { // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved auto n = pcd_read_register(DivIrqReg); if (n & 0x04) { // CRCIRq bit set - calculation done pcd_write_register(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO. // Transfer the result from the registers to the result buffer result[0] = pcd_read_register(CRCResultRegL); result[1] = pcd_read_register(CRCResultRegH); return STATUS_OK; } } // 89ms passed and nothing happend. Communication with the MFRC522 might be down. return STATUS_TIMEOUT; } // End PCD_CalculateCRC() ///////////////////////////////////////////////////////////////////////////////////// // Functions for manipulating the MFRC522 ///////////////////////////////////////////////////////////////////////////////////// /** * Initializes the MFRC522 chip. */ void mfrc522::pcd_init() { reset_.set_direction(gpio::output); reset_.set_value(gpio::low); usleep(50'000); reset_.set_value(gpio::high); // Reset baud rates pcd_write_register(TxModeReg, 0x00); pcd_write_register(RxModeReg, 0x00); // Reset ModWidthReg pcd_write_register(ModWidthReg, 0x26); // When communicating with a PICC we need a timeout if something goes wrong. // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo]. // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg. pcd_write_register(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds pcd_write_register(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25μs. pcd_write_register(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout. pcd_write_register(TReloadRegL, 0xE8); pcd_write_register(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting pcd_write_register(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4) pcd_antenna_on(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset) } // End PCD_Init() /** * Performs a soft reset on the MFRC522 chip and waits for it to be ready again. */ void mfrc522::pcd_reset() { pcd_write_register(CommandReg, PCD_SoftReset); // Issue the SoftReset command. // The datasheet does not mention how long the SoftRest command takes to complete. // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg) // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74μs. Let us be generous: 50ms. uint8_t count = 0; do { // Wait for the PowerDown bit in CommandReg to be cleared (max 3x50ms) usleep(50'000); } while ((pcd_read_register(CommandReg) & (1 << 4)) && (++count) < 3); } // End PCD_Reset() /** * Turns the antenna on by enabling pins TX1 and TX2. * After a reset these pins are disabled. */ void mfrc522::pcd_antenna_on() { auto value = pcd_read_register(TxControlReg); if ((value & 0x03) != 0x03) { pcd_write_register(TxControlReg, value | 0x03); } } // End PCD_AntennaOn() /** * Turns the antenna off by disabling pins TX1 and TX2. */ void mfrc522::pcd_antenna_off() { pcd_clear_register_bit_mask(TxControlReg, 0x03); } // End PCD_AntennaOff() /** * Get the current MFRC522 Receiver Gain (RxGain[2:0]) value. * See 9.3.3.6 / table 98 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf * NOTE: Return value scrubbed with (0x07<<4)=01110000b as RCFfgReg may use reserved bits. * * @return Value of the RxGain, scrubbed to the 3 bits used. */ byte mfrc522::pcd_get_antenna_gain() { return pcd_read_register(RFCfgReg) & (0x07 << 4); } // End PCD_GetAntennaGain() /** * Set the MFRC522 Receiver Gain (RxGain) to value specified by given mask. * See 9.3.3.6 / table 98 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf * NOTE: Given mask is scrubbed with (0x07<<4)=01110000b as RCFfgReg may use reserved bits. */ void mfrc522::pcd_set_antenna_gain(byte mask) { if (pcd_get_antenna_gain() != mask) { // only bother if there is a change pcd_clear_register_bit_mask(RFCfgReg, (0x07 << 4)); // clear needed to allow 000 pattern pcd_set_register_bit_mask(RFCfgReg, mask & (0x07 << 4)); // only set RxGain[2:0] bits } } // End PCD_SetAntennaGain() /** * Performs a self-test of the MFRC522 * See 16.1.1 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf * * @return Whether or not the test passed. Or false if no firmware reference is available. */ bool mfrc522::pcd_perform_self_test() { // This follows directly the steps outlined in 16.1.1 // 1. Perform a soft reset. pcd_reset(); // 2. Clear the internal buffer by writing 25 bytes of 00h byte zeroes[25] = { 0 }; pcd_write_register(FIFOLevelReg, 0x80); // flush the FIFO buffer pcd_write_register(FIFODataReg, 25, zeroes); // write 25 bytes of 00h to FIFO pcd_write_register(CommandReg, PCD_Mem); // transfer to internal buffer // 3. Enable self-test pcd_write_register(AutoTestReg, 0x09); // 4. Write 00h to FIFO buffer pcd_write_register(FIFODataReg, 0x00); // 5. Start self-test by issuing the CalcCRC command pcd_write_register(CommandReg, PCD_CalcCRC); // 6. Wait for self-test to complete byte n; for (uint8_t i = 0; i < 0xFF; i++) { // The datasheet does not specify exact completion condition except // that FIFO buffer should contain 64 bytes. // While selftest is initiated by CalcCRC command // it behaves differently from normal CRC computation, // so one can't reliably use DivIrqReg to check for completion. // It is reported that some devices does not trigger CRCIRq flag // during selftest. n = pcd_read_register(FIFOLevelReg); if (n >= 64) { break; } } pcd_write_register(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO. // 7. Read out resulting 64 bytes from the FIFO buffer. byte result[64]; pcd_read_register(FIFODataReg, 64, result, 0); // Auto self-test done // Reset AutoTestReg register to be 0 again. Required for normal operation. pcd_write_register(AutoTestReg, 0x00); // Determine firmware version (see section 9.3.4.8 in spec) auto version = pcd_read_register(VersionReg); // Pick the appropriate reference values const byte *reference; switch (version) { case 0x88: // Fudan Semiconductor FM17522 clone reference = fm17522_firmware_reference; break; case 0x90: // Version 0.0 reference = mfrc522_firmware_reference_v0_0; break; case 0x91: // Version 1.0 reference = mfrc522_firmware_reference_v1_0; break; case 0x92: // Version 2.0 reference = mfrc522_firmware_reference_v2_0; break; default: // Unknown version return false; // abort test } // Verify that the results match up to our expectations for (uint8_t i = 0; i < 64; i++) { // TODO: is this correct? if (result[i] != reference[i]) { return false; } } // Test passed; all is good. return true; } // End PCD_PerformSelfTest() ///////////////////////////////////////////////////////////////////////////////////// // Power control ///////////////////////////////////////////////////////////////////////////////////// //IMPORTANT NOTE!!!! //Calling any other function that uses CommandReg will disable soft power down mode !!! //For more details about power control, refer to the datasheet - page 33 (8.6) void mfrc522::pcd_soft_power_down() // Note : Only soft power down mode is available throught software { auto val = pcd_read_register(CommandReg); // Read state of the command register val |= (1<<4);// set PowerDown bit ( bit 4 ) to 1 pcd_write_register(CommandReg, val);//write new value to the command register } ///////////////////////////////////////////////////////////////////////////////////// // Functions for communicating with PICCs ///////////////////////////////////////////////////////////////////////////////////// /** * Executes the Transceive command. * CRC validation can only be done if backData and backLen are specified. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::pcd_transceive_data( byte *send_data, ///< Pointer to the data to transfer to the FIFO. byte send_len, ///< Number of bytes to transfer to the FIFO. byte *back_data, ///< nullptr or pointer to buffer if data should be read back after executing the command. byte *back_len, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. byte *valid_bits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. Default nullptr. byte rx_align, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. bool check_crc ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. ) { byte waitIRq = 0x30; // RxIRq and IdleIRq return pcd_communicate_with_picc(PCD_Transceive, waitIRq, send_data, send_len, back_data, back_len, valid_bits, rx_align, check_crc); } // End PCD_TransceiveData() /** * Transfers data to the MFRC522 FIFO, executes a command, waits for completion and transfers data back from the FIFO. * CRC validation can only be done if backData and backLen are specified. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::pcd_communicate_with_picc( byte command, ///< The command to execute. One of the PCD_Command enums. byte wait_irq, ///< The bits in the ComIrqReg register that signals successful completion of the command. byte *send_data, ///< Pointer to the data to transfer to the FIFO. byte send_len, ///< Number of bytes to transfer to the FIFO. byte *back_data, ///< nullptr or pointer to buffer if data should be read back after executing the command. byte *back_len, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. byte *valid_bits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. byte rx_align, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. bool check_crc ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. ) { // Prepare values for BitFramingReg byte txLastBits = valid_bits ? *valid_bits : 0; byte bitFraming = (rx_align << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] pcd_write_register(CommandReg, PCD_Idle); // Stop any active command. pcd_write_register(ComIrqReg, 0x7F); // Clear all seven interrupt request bits pcd_write_register(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization pcd_write_register(FIFODataReg, send_len, send_data); // Write sendData to the FIFO pcd_write_register(BitFramingReg, bitFraming); // Bit adjustments pcd_write_register(CommandReg, command); // Execute the command if (command == PCD_Transceive) { pcd_set_register_bit_mask(BitFramingReg, 0x80); // StartSend=1, transmission of data starts } // Wait for the command to complete. // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting. // Each iteration of the do-while-loop takes 17.86μs. // TODO check/modify for other architectures than Arduino Uno 16bit uint16_t i; for (i = 2000; i > 0; i--) { byte n = pcd_read_register(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq if (n & wait_irq) { // One of the interrupts that signal success has been set. break; } if (n & 0x01) { // Timer interrupt - nothing received in 25ms return STATUS_TIMEOUT; } } // 35.7ms and nothing happend. Communication with the MFRC522 might be down. if (i == 0) { return STATUS_TIMEOUT; } // Stop now if any errors except collisions were detected. auto error_reg_value = pcd_read_register(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr if (error_reg_value & 0x13) { // BufferOvfl ParityErr ProtocolErr return STATUS_ERROR; } byte _validBits = 0; // If the caller wants data back, get it from the MFRC522. if (back_data && back_len) { byte n = pcd_read_register(FIFOLevelReg); // Number of bytes in the FIFO if (n > *back_len) { return STATUS_NO_ROOM; } *back_len = n; // Number of bytes returned pcd_read_register(FIFODataReg, n, back_data, rx_align); // Get received data from FIFO _validBits = pcd_read_register(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid. if (valid_bits) { *valid_bits = _validBits; } } // Tell about collisions if (error_reg_value & 0x08) { // CollErr return STATUS_COLLISION; } // Perform CRC_A validation if requested. if (back_data && back_len && check_crc) { // In this case a MIFARE Classic NAK is not OK. if (*back_len == 1 && _validBits == 4) { return STATUS_MIFARE_NACK; } // We need at least the CRC_A value and all 8 bits of the last byte must be received. if (*back_len < 2 || _validBits != 0) { return STATUS_CRC_WRONG; } // Verify CRC_A - do our own calculation and store the control in controlBuffer. byte control_buffer[2]; auto status = pcd_calculate_crc(&back_data[0], *back_len - 2, &control_buffer[0]); if (status != STATUS_OK) { return status; } if ((back_data[*back_len - 2] != control_buffer[0]) || (back_data[*back_len - 1] != control_buffer[1])) { return STATUS_CRC_WRONG; } } return STATUS_OK; } // End PCD_CommunicateWithPICC() /** * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::picc_request_a( byte *buffer_atqa, ///< The buffer to store the ATQA (Answer to request) in byte *buffer_size ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. ) { return picc_reqa_or_wupa(PICC_CMD_REQA, buffer_atqa, buffer_size); } // End PICC_RequestA() /** * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::picc_wakeup_a( byte *buffer_atqa, ///< The buffer to store the ATQA (Answer to request) in byte *buffer_size ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. ) { return picc_reqa_or_wupa(PICC_CMD_WUPA, buffer_atqa, buffer_size); } // End PICC_WakeupA() /** * Transmits REQA or WUPA commands. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::picc_reqa_or_wupa( byte command, ///< The command to send - PICC_CMD_REQA or PICC_CMD_WUPA byte *buffer_atqa, ///< The buffer to store the ATQA (Answer to request) in byte *buffer_size ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. ) { if (buffer_atqa == nullptr || *buffer_size < 2) { // The ATQA response is 2 bytes long. return STATUS_NO_ROOM; } pcd_clear_register_bit_mask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. byte valid_bits = 7; // For REQA and WUPA we need the short frame format - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0] auto status = pcd_transceive_data(&command, 1, buffer_atqa, buffer_size, &valid_bits); if (status != STATUS_OK) { return status; } if (*buffer_size != 2 || valid_bits != 0) { // ATQA must be exactly 16 bits. return STATUS_ERROR; } return STATUS_OK; } // End PICC_REQA_or_WUPA() /** * Transmits SELECT/ANTICOLLISION commands to select a single PICC. * Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA(). * On success: * - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.) * - The UID size and value of the chosen PICC is returned in *uid along with the SAK. * * A PICC UID consists of 4, 7 or 10 bytes. * Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used: * UID size Number of UID bytes Cascade levels Example of PICC * ======== =================== ============== =============== * single 4 1 MIFARE Classic * double 7 2 MIFARE Ultralight * triple 10 3 Not currently in use? * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::picc_select( uid_t *uid, ///< Pointer to Uid struct. Normally output, but can also be used to supply a known UID. byte valid_bits ///< The number of known UID bits supplied in *uid. Normally 0. If set you must also supply uid->size. ) { bool use_cascade_tag; byte cascade_level = 1; status_code result; byte count; byte uid_index; // The first index in uid->uidByte[] that is used in the current Cascade Level. byte buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A byte buffer_used; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO. byte tx_last_bits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte. byte *response_buffer; byte response_length; // Description of buffer structure: // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3 // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits. // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag. // Byte 3: UID-data // Byte 4: UID-data // Byte 5: UID-data // Byte 6: BCC Block Check Character - XOR of bytes 2-5 // Byte 7: CRC_A // Byte 8: CRC_A // The BCC and CRC_A are only transmitted if we know all the UID bits of the current Cascade Level. // // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels) // UID size Cascade level Byte2 Byte3 Byte4 Byte5 // ======== ============= ===== ===== ===== ===== // 4 bytes 1 uid0 uid1 uid2 uid3 // 7 bytes 1 CT uid0 uid1 uid2 // 2 uid3 uid4 uid5 uid6 // 10 bytes 1 CT uid0 uid1 uid2 // 2 CT uid3 uid4 uid5 // 3 uid6 uid7 uid8 uid9 // Sanity checks if (valid_bits > 80) { return STATUS_INVALID; } // Prepare MFRC522 pcd_clear_register_bit_mask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. // Repeat Cascade Level loop until we have a complete UID. auto uid_complete = false; while (!uid_complete) { // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2. switch (cascade_level) { case 1: buffer[0] = PICC_CMD_SEL_CL1; uid_index = 0; use_cascade_tag = valid_bits && uid->size > 4; // When we know that the UID has more than 4 bytes break; case 2: buffer[0] = PICC_CMD_SEL_CL2; uid_index = 3; use_cascade_tag = valid_bits && uid->size > 7; // When we know that the UID has more than 7 bytes break; case 3: buffer[0] = PICC_CMD_SEL_CL3; uid_index = 6; use_cascade_tag = false; // Never used in CL3. break; default: return STATUS_INTERNAL_ERROR; } // How many UID bits are known in this Cascade Level? int8_t current_level_known_bits = valid_bits - (8 * uid_index); if (current_level_known_bits < 0) { current_level_known_bits = 0; } // Copy the known bits from uid->uidByte[] to buffer[] byte index = 2; // destination index in buffer[] if (use_cascade_tag) { buffer[index++] = PICC_CMD_CT; } byte bytesToCopy = current_level_known_bits / 8 + (current_level_known_bits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level. if (bytesToCopy) { byte maxBytes = use_cascade_tag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag if (bytesToCopy > maxBytes) { bytesToCopy = maxBytes; } for (count = 0; count < bytesToCopy; count++) { buffer[index++] = uid->uid_byte[uid_index + count]; } } // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits if (use_cascade_tag) { current_level_known_bits += 8; } // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations. auto select_done = false; while (!select_done) { // Find out how many bits and bytes to send and receive. if (current_level_known_bits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT. //Serial.print(F("SELECT: currentLevelKnownBits=")); printf(currentLevelKnownBits, DEC); buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes // Calculate BCC - Block Check Character buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5]; // Calculate CRC_A result = pcd_calculate_crc(buffer, 7, &buffer[7]); if (result != STATUS_OK) { return result; } tx_last_bits = 0; // 0 => All 8 bits are valid. buffer_used = 9; // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx) response_buffer = &buffer[6]; response_length = 3; } else { // This is an ANTICOLLISION. //Serial.print(F("ANTICOLLISION: currentLevelKnownBits=")); printf(currentLevelKnownBits, DEC); tx_last_bits = current_level_known_bits % 8; count = current_level_known_bits / 8; // Number of whole bytes in the UID part. index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs buffer[1] = (index << 4) + tx_last_bits; // NVB - Number of Valid Bits buffer_used = index + (tx_last_bits ? 1 : 0); // Store response in the unused part of buffer response_buffer = &buffer[index]; response_length = sizeof(buffer) - index; } // Set bit adjustments auto rx_align = tx_last_bits; // Having a separate variable is overkill. But it makes the next line easier to read. pcd_write_register(BitFramingReg, (rx_align << 4) + tx_last_bits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] // Transmit the buffer and receive the response. result = pcd_transceive_data(buffer, buffer_used, response_buffer, &response_length, &tx_last_bits, rx_align); if (result == STATUS_COLLISION) { // More than one PICC in the field => collision. byte valueOfCollReg = pcd_read_register(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0] if (valueOfCollReg & 0x20) { // CollPosNotValid return STATUS_COLLISION; // Without a valid collision position we cannot continue } byte collisionPos = valueOfCollReg & 0x1F; // Values 0-31, 0 means bit 32. if (collisionPos == 0) { collisionPos = 32; } if (collisionPos <= current_level_known_bits) { // No progress - should not happen return STATUS_INTERNAL_ERROR; } // Choose the PICC with the bit set. count = (collisionPos - 1) % 8; // The bit to modify index = 1 + ((collisionPos - 1) / 8) + (count ? 1 : 0); // First byte is index 0. buffer[index] |= (1 << count); //currentLevelKnownBits = collisionPos; // FIXME not used further, maybe bug } else if (result != STATUS_OK) { return result; } else { // STATUS_OK if (current_level_known_bits >= 32) { // This was a SELECT. select_done = true; // No more anticollision // We continue below outside the while. } else { // This was an ANTICOLLISION. // We now have all 32 bits of the UID in this Cascade Level current_level_known_bits = 32; // Run loop again to do the SELECT. } } } // End of while (!selectDone) // We do not check the CBB - it was constructed by us above. // Copy the found UID bytes from buffer[] to uid->uidByte[] index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[] bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4; for (count = 0; count < bytesToCopy; count++) { uid->uid_byte[uid_index + count] = buffer[index++]; } // Check response SAK (Select Acknowledge) if (response_length != 3 || tx_last_bits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A). return STATUS_ERROR; } // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore. result = pcd_calculate_crc(response_buffer, 1, &buffer[2]); if (result != STATUS_OK) { return result; } if ((buffer[2] != response_buffer[1]) || (buffer[3] != response_buffer[2])) { return STATUS_CRC_WRONG; } if (response_buffer[0] & 0x04) { // Cascade bit set - UID not complete yes cascade_level++; } else { uid_complete = true; uid->sak = response_buffer[0]; } } // End of while (!uidComplete) // Set correct uid->size uid->size = 3 * cascade_level + 1; return STATUS_OK; } // End PICC_Select() /** * Instructs a PICC in state ACTIVE(*) to go to state HALT. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::picc_halt_a() { // Build command buffer byte buffer[4] = { PICC_CMD_HLTA, 0 }; // Calculate CRC_A auto result = pcd_calculate_crc(buffer, 2, &buffer[2]); if (result != STATUS_OK) { return result; } // Send the command. // The standard says: // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the // HLTA command, this response shall be interpreted as 'not acknowledge'. // We interpret that this way: Only STATUS_TIMEOUT is a success. result = pcd_transceive_data(buffer, sizeof(buffer), nullptr, 0); if (result == STATUS_TIMEOUT) { return STATUS_OK; } if (result == STATUS_OK) { // That is ironically NOT ok in this case ;-) return STATUS_ERROR; } return result; } // End PICC_HaltA() ///////////////////////////////////////////////////////////////////////////////////// // Functions for communicating with MIFARE PICCs ///////////////////////////////////////////////////////////////////////////////////// /** * Executes the MFRC522 MFAuthent command. * This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card. * The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1. * For use with MIFARE Classic PICCs. * The PICC must be selected - ie in state ACTIVE(*) - before calling this function. * Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start. * * All keys are set to FFFFFFFFFFFFh at chip delivery. * * @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key. */ mfrc522::status_code mfrc522::pcd_authenticate( byte command, ///< PICC_CMD_MF_AUTH_KEY_A or PICC_CMD_MF_AUTH_KEY_B byte block_addr, ///< The block number. See numbering in the comments in the .h file. mifare_key const *key, ///< Pointer to the Crypteo1 key to use (6 bytes) uid_t *uid ///< Pointer to Uid struct. The first 4 bytes of the UID is used. ) { byte wait_irq = 0x10; // IdleIRq // Build command buffer byte send_data[12]; send_data[0] = command; send_data[1] = block_addr; for (byte i = 0; i < MF_KEY_SIZE; i++) { // 6 key bytes send_data[2 + i] = key->key_byte[i]; } // Use the last uid bytes as specified in http://cache.nxp.com/documents/application_note/AN10927.pdf // section 3.2.5 "MIFARE Classic Authentication". // The only missed case is the MF1Sxxxx shortcut activation, // but it requires cascade tag (CT) byte, that is not part of uid. for (byte i = 0; i < 4; i++) { // The last 4 bytes of the UID send_data[8 + i] = uid->uid_byte[i + uid->size - 4]; } // Start the authentication. return pcd_communicate_with_picc(PCD_MFAuthent, wait_irq, &send_data[0], sizeof send_data); } // End PCD_Authenticate() /** * Used to exit the PCD from its authenticated state. * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start. */ void mfrc522::pcd_stop_crypto1() { // Clear MFCrypto1On bit pcd_clear_register_bit_mask(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0] } // End PCD_StopCrypto1() /** * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC. * * For MIFARE Classic the sector containing the block must be authenticated before calling this function. * * For MIFARE Ultralight only addresses 00h to 0Fh are decoded. * The MF0ICU1 returns a NAK for higher addresses. * The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument. * For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned. * A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned. * * The buffer must be at least 18 bytes because a CRC_A is also returned. * Checks the CRC_A before returning STATUS_OK. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::mifare_read( byte block_addr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The first page to return data from. byte *buffer, ///< The buffer to store the data in byte *buffer_size ///< Buffer size, at least 18 bytes. Also number of bytes returned if STATUS_OK. ) { // Sanity check if (buffer == nullptr || *buffer_size < 18) { return STATUS_NO_ROOM; } // Build command buffer buffer[0] = PICC_CMD_MF_READ; buffer[1] = block_addr; // Calculate CRC_A auto result = pcd_calculate_crc(buffer, 2, &buffer[2]); if (result != STATUS_OK) { return result; } // Transmit the buffer and receive the response, validate CRC_A. return pcd_transceive_data(buffer, 4, buffer, buffer_size, nullptr, 0, true); } // End MIFARE_Read() /** * Writes 16 bytes to the active PICC. * * For MIFARE Classic the sector containing the block must be authenticated before calling this function. * * For MIFARE Ultralight the operation is called "COMPATIBILITY WRITE". * Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3) * are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0. * * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::mifare_write( byte block_addr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The page (2-15) to write to. byte *buffer, ///< The 16 bytes to write to the PICC byte buffer_size ///< Buffer size, must be at least 16 bytes. Exactly 16 bytes are written. ) { // Sanity check if (buffer == nullptr || buffer_size < 16) { return STATUS_INVALID; } // Mifare Classic protocol requires two communications to perform a write. // Step 1: Tell the PICC we want to write to block blockAddr. byte cmd_buffer[2] = { PICC_CMD_MF_WRITE, block_addr }; auto result = pcd_mifare_transceive(cmd_buffer, 2); // Adds CRC_A and checks that the response is MF_ACK. if (result != STATUS_OK) { return result; } // Step 2: Transfer the data result = pcd_mifare_transceive(buffer, buffer_size); // Adds CRC_A and checks that the response is MF_ACK. if (result != STATUS_OK) { return result; } return STATUS_OK; } // End MIFARE_Write() /** * Writes a 4 byte page to the active MIFARE Ultralight PICC. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::mifare_ultralight_write( byte page, ///< The page (2-15) to write to. byte *buffer, ///< The 4 bytes to write to the PICC byte buffer_size ///< Buffer size, must be at least 4 bytes. Exactly 4 bytes are written. ) { // Sanity check if (buffer == nullptr || buffer_size < 4) { return STATUS_INVALID; } // Build commmand buffer byte cmd_buffer[6]; cmd_buffer[0] = PICC_CMD_UL_WRITE; cmd_buffer[1] = page; memcpy(&cmd_buffer[2], buffer, 4); // Perform the write auto result = pcd_mifare_transceive(cmd_buffer, 6); // Adds CRC_A and checks that the response is MF_ACK. if (result != STATUS_OK) { return result; } return STATUS_OK; } // End MIFARE_Ultralight_Write() /** * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * Use MIFARE_Transfer() to store the result in a block. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::mifare_decrement( byte block_addr, ///< The block (0-0xff) number. int32_t delta ///< This number is subtracted from the value of block blockAddr. ) { return mifare_two_step_helper(PICC_CMD_MF_DECREMENT, block_addr, delta); } // End MIFARE_Decrement() /** * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * Use MIFARE_Transfer() to store the result in a block. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::mifare_increment( byte block_addr, ///< The block (0-0xff) number. int32_t delta ///< This number is added to the value of block blockAddr. ) { return mifare_two_step_helper(PICC_CMD_MF_INCREMENT, block_addr, delta); } // End MIFARE_Increment() /** * MIFARE Restore copies the value of the addressed block into a volatile memory. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * Use MIFARE_Transfer() to store the result in a block. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::mifare_restore( byte block_addr ///< The block (0-0xff) number. ) { // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2. // Doing only a single step does not work, so I chose to transfer 0L in step two. return mifare_two_step_helper(PICC_CMD_MF_RESTORE, block_addr, 0L); } // End MIFARE_Restore() /** * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::mifare_two_step_helper( byte command, ///< The command to use byte block_addr, ///< The block (0-0xff) number. int32_t data ///< The data to transfer in step 2 ) { // Step 1: Tell the PICC the command and block address byte cmd_buffer[2] = { command, block_addr }; // We only need room for 2 bytes. auto result = pcd_mifare_transceive(cmd_buffer, 2); // Adds CRC_A and checks that the response is MF_ACK. if (result != STATUS_OK) { return result; } // Step 2: Transfer the data result = pcd_mifare_transceive(reinterpret_cast(&data), 4, true); // Adds CRC_A and accept timeout as success. if (result != STATUS_OK) { return result; } return STATUS_OK; } // End MIFARE_TwoStepHelper() /** * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::mifare_transfer( byte block_addr ///< The block (0-0xff) number. ) { // Tell the PICC we want to transfer the result into block blockAddr. byte cmd_buffer[2] = { PICC_CMD_MF_TRANSFER, block_addr }; // We only need room for 2 bytes. auto result = pcd_mifare_transceive(cmd_buffer, 2); // Adds CRC_A and checks that the response is MF_ACK. if (result != STATUS_OK) { return result; } return STATUS_OK; } // End MIFARE_Transfer() /** * Helper routine to read the current value from a Value Block. * * Only for MIFARE Classic and only for blocks in "value block" mode, that * is: with access bits [C1 C2 C3] = [110] or [001]. The sector containing * the block must be authenticated before calling this function. * * @param[in] block_addr The block (0x00-0xff) number. * @param[out] value Current value of the Value Block. * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::mifare_get_value(byte block_addr, int32_t *value) { byte buffer[18]; byte size = sizeof(buffer); // Read the block auto status = mifare_read(block_addr, buffer, &size); if (status == STATUS_OK) { // Extract the value *value = (int32_t(buffer[3]) << 24) | (int32_t(buffer[2]) << 16) | (int32_t(buffer[1]) << 8) | int32_t(buffer[0]); } return status; } // End MIFARE_GetValue() /** * Helper routine to write a specific value into a Value Block. * * Only for MIFARE Classic and only for blocks in "value block" mode, that * is: with access bits [C1 C2 C3] = [110] or [001]. The sector containing * the block must be authenticated before calling this function. * * @param[in] block_addr The block (0x00-0xff) number. * @param[in] value New value of the Value Block. * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::mifare_set_value(byte block_addr, int32_t value) { byte buffer[18]; // Translate the int32_t into 4 bytes; repeated 2x in value block buffer[0] = buffer[8] = (value & 0xFF); buffer[1] = buffer[9] = (value & 0xFF00) >> 8; buffer[2] = buffer[10] = (value & 0xFF0000) >> 16; buffer[3] = buffer[11] = (value & 0xFF000000) >> 24; // Inverse 4 bytes also found in value block buffer[4] = ~buffer[0]; buffer[5] = ~buffer[1]; buffer[6] = ~buffer[2]; buffer[7] = ~buffer[3]; // Address 2x with inverse address 2x buffer[12] = buffer[14] = block_addr; buffer[13] = buffer[15] = ~block_addr; // Write the whole data block return mifare_write(block_addr, buffer, 16); } // End MIFARE_SetValue() /** * Authenticate with a NTAG216. * * Only for NTAG216. First implemented by Gargantuanman. * * @param[in] password password. * @param[in] p_ack result success???. * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::pcd_ntag216_auth(byte* password, byte p_ack[]) //Authenticate with 32bit password { // TODO: Fix cmdBuffer length and rxlength. They really should match. // (Better still, rxlength should not even be necessary.) byte cmd_buffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A. cmd_buffer[0] = 0x1B; //Comando de autentificacion for (byte i = 0; i < 4; i++) cmd_buffer[i + 1] = password[i]; auto result = pcd_calculate_crc(cmd_buffer, 5, &cmd_buffer[5]); if (result != STATUS_OK) { return result; } // Transceive the data, store the reply in cmdBuffer[] byte wait_irq = 0x30; // RxIRq and IdleIRq // byte cmdBufferSize = sizeof(cmdBuffer); byte validBits = 0; byte rxlength = 5; result = pcd_communicate_with_picc(PCD_Transceive, wait_irq, cmd_buffer, 7, cmd_buffer, &rxlength, &validBits); p_ack[0] = cmd_buffer[0]; p_ack[1] = cmd_buffer[1]; if (result != STATUS_OK) { return result; } return STATUS_OK; } // End PCD_NTAG216_AUTH() ///////////////////////////////////////////////////////////////////////////////////// // Support functions ///////////////////////////////////////////////////////////////////////////////////// /** * Wrapper for MIFARE protocol communication. * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout. * * @return STATUS_OK on success, STATUS_??? otherwise. */ mfrc522::status_code mfrc522::pcd_mifare_transceive( byte *send_data, ///< Pointer to the data to transfer to the FIFO. Do NOT include the CRC_A. byte send_len, ///< Number of bytes in sendData. bool accept_timeout ///< True => A timeout is also success ) { byte cmd_buffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A. // Sanity check if (send_data == nullptr || send_len > 16) { return STATUS_INVALID; } // Copy sendData[] to cmdBuffer[] and add CRC_A memcpy(cmd_buffer, send_data, send_len); auto result = pcd_calculate_crc(cmd_buffer, send_len, &cmd_buffer[send_len]); if (result != STATUS_OK) { return result; } send_len += 2; // Transceive the data, store the reply in cmdBuffer[] byte wait_irq = 0x30; // RxIRq and IdleIRq byte cmd_buffer_size = sizeof(cmd_buffer); byte valid_bits = 0; result = pcd_communicate_with_picc(PCD_Transceive, wait_irq, cmd_buffer, send_len, cmd_buffer, &cmd_buffer_size, &valid_bits); if (accept_timeout && result == STATUS_TIMEOUT) { return STATUS_OK; } if (result != STATUS_OK) { return result; } // The PICC must reply with a 4 bit ACK if (cmd_buffer_size != 1 || valid_bits != 4) { return STATUS_ERROR; } if (cmd_buffer[0] != MF_ACK) { return STATUS_MIFARE_NACK; } return STATUS_OK; } // End PCD_MIFARE_Transceive() /** * Translates the SAK (Select Acknowledge) to a PICC type. * * @return PICC_Type */ mfrc522::picc_type mfrc522::picc_get_type( byte sak ///< The SAK byte returned from PICC_Select(). ) { // http://www.nxp.com/documents/application_note/AN10833.pdf // 3.2 Coding of Select Acknowledge (SAK) // ignore 8-bit (iso14443 starts with LSBit = bit 1) // fixes wrong type for manufacturer Infineon (http://nfc-tools.org/index.php?title=ISO14443A) sak &= 0x7F; switch (sak) { case 0x04: return PICC_TYPE_NOT_COMPLETE; // UID not complete case 0x09: return PICC_TYPE_MIFARE_MINI; case 0x08: return PICC_TYPE_MIFARE_1K; case 0x18: return PICC_TYPE_MIFARE_4K; case 0x00: return PICC_TYPE_MIFARE_UL; case 0x10: case 0x11: return PICC_TYPE_MIFARE_PLUS; case 0x01: return PICC_TYPE_TNP3XXX; case 0x20: return PICC_TYPE_ISO_14443_4; case 0x40: return PICC_TYPE_ISO_18092; default: return PICC_TYPE_UNKNOWN; } } // End PICC_GetType() /** * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tuples C1 is MSB (=4) and C3 is LSB (=1). */ void mfrc522::mifare_set_access_bits( byte *access_bit_buffer, ///< Pointer to byte 6, 7 and 8 in the sector trailer. Bytes [0..2] will be set. byte g0, ///< Access bits [C1 C2 C3] for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39) byte g1, ///< Access bits C1 C2 C3] for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39) byte g2, ///< Access bits C1 C2 C3] for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39) byte g3 ///< Access bits C1 C2 C3] for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39) ) { byte c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2); byte c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1); byte c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0); access_bit_buffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF); access_bit_buffer[1] = c1 << 4 | (~c3 & 0xF); access_bit_buffer[2] = c3 << 4 | c2; } // End MIFARE_SetAccessBits() ///////////////////////////////////////////////////////////////////////////////////// // Convenience functions - does not add extra functionality ///////////////////////////////////////////////////////////////////////////////////// /** * Returns true if a PICC responds to PICC_CMD_REQA. * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored. * * @return bool */ bool mfrc522::picc_is_new_card_present() { byte buffer_atqa[2]; byte buffer_size = sizeof buffer_atqa; // Reset baud rates pcd_write_register(TxModeReg, 0x00); pcd_write_register(RxModeReg, 0x00); // Reset ModWidthReg pcd_write_register(ModWidthReg, 0x26); auto result = picc_request_a(buffer_atqa, &buffer_size); return result == STATUS_OK || result == STATUS_COLLISION; } // End PICC_IsNewCardPresent() /** * Simple wrapper around PICC_Select. * Returns true if a UID could be read. * Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first. * The read UID is available in the class variable uid. * * @return bool */ bool mfrc522::picc_read_card_serial() { return picc_select(&uid) == STATUS_OK; } // End